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Prenatal Immunotoxicant Exposure and Postnatal Autoimmune Disease
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Reports in humans and rodents indicate that immune development may be altered following
perinatal exposure to immunotoxic compounds, including chemotherapeutics, corticosteroids,
polycyclic hydrocarbons, and polyhalogenated hydrocarbons. Effects from such exposure may be
more dramatic or persistent than following exposure during adult life. For example, prenatal
exposure to the insecticide chlordane or to the polycyclic aromatic hydrocarbon benzo[alpyrene
produces what appears to be lifelong immunosuppression in mice. Whether prenatal
immunotoxicant exposure may predispose the organism to postnatal autoimmune disease remains
largely unknown. In this regard, the therapeutic immunosuppressant cyclosporin A (CsA) crosses
the placenta poorly. However, lethally irradiated rodents exposed to CsA postsyngeneic bone
marrow transplant (i.e., during re-establishment of the immune system) develop T-cell-mediated
autoimmune disease, suggesting this drug may produce a fundamental disruption in development
of self-tolerance by T cells. The environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD) crosses the placenta and produces fetal thymic effects in vivo similar to effects of CsA in
fetal thymic organ culture, including inhibited thymocyte maturation and reduced expression of
thymic major histocompatability complex class 11 molecules. These observations led to the
suggestion that gestational exposure to TCDD may interfere with normal development of self-
tolerance. Possibly supporting this hypothesis, when mice predisposed to development of
autoimmune disease were treated with TCDD during gestation, postnatal autoimmunity was
exacerbated. Similar results have been reported for mice exposed to diethylstilbestrol during
development. These reports suggest that prenatal exposure to certain immunotoxicants may play a
role in postnatal expression of autoimmunity. Key words: autoimmune disease, cyclosporin A,
diethylstilbestrol, prenatal, TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin. - Environ Health Perspect
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Prenatal immune system ontogenesis and
postnatal functional integrity of the
immune system require a sequential series
of carefully timed and coordinated develop-
mental events that begin early in embryonic
life. In experimental animals, the develop-
ing organism has not always been found to
be more sensitive to toxic effects from expo-
sure to physical or chemical agents than the
fully mature individual, but the conse-
quences are often more severe (1-6).
Studies in this relatively new area dealing
with xenobiotic exposure during immune
system organogenesis may be divided into
three basic research initiatives: a) identifi-
cation of sensitive tests and screening pro-
cedures for detecting developmental
immunotoxicants; b) altered postnatal
immunocompetence, including decreased
resistance to infectious disease or neoplasia
after perinatal xenobiotic exposure; and
c) exacerbation of immune-mediated dis-
eases, including hypersensitivity disorders
and autoimmune disease resulting from peri-
natal exposure. Although considerable effort
has been devoted to the first two of these
initiatives, the possibility that developmental
chemical exposure may be related to
increased incidence or severity of aberrant
immunity has received limited attention.

The majority of available data suggesting
a link between prenatal chemical exposure
and enhanced or induced postnatal autoim-
munity concerns estrogenic agents such as
diethylstilbestrol (DES), which alter the pre-
natal hormonal environment and directly tar-
get developing immune cells and halogenated
aromatic hydrocarbons (HAHs) such as
2,3 ,7, 8-tetrachlorodibenzo-p-dioxin
(TCDD). The therapeutic immunosup-
pressant cyclosporin A (CsA) produces a
T-cell-mediated autoimmunity in rodents by
effects on T-cell development similar to those
caused by TCDD and will also be discussed.

Consequences of
Developmental
Immunotoxicant Exposure
Numerous published reports indicate that
developmental exposure of laboratory animals
to immunotoxic chemicals may result in more
severe effects on the immune system than
exposure during adult life. For example, selec-
tive and persistent immune alterations have
been observed in mice following gestational
exposure to the organochlorine insecticide
chlordane, including a significant depression of
cell-mediated immunity still present 101 days
after birth (7). Mice exposed to chlordane
during fetal life also display reduced numbers

of granulocyte-macrophage colony-forming
units and colony-forming units in the spleen
at 200 days of age (8) as well as long-term
depression of both delayed-type hypersensitiv-
ity and mixed lymphocyte reactivity (9). It is
noteworthy that these immune effects are
either reduced or not observed in adult mice
exposed to chlordane at dose levels equal to
those given to the pregnant mice (8). Similar
results have been reported in mice exposed
during development to benzo[a]pyrene
(B[a]P), a polycyclic aromatic hydrocarbon
(PAH). For instance, offspring of pregnant
mice treated with B[a]P have been found to
display depressed antibody, graft-versus-host,
and mixed lymphocyte responses at 18
months of age (10). These mice further exhib-
ited an 8- to 10-fold higher tumor incidence
than control mice that did not experience
in utero B[a]P exposure. Low-level prenatal
exposure to certain HAHs, notably dioxins,
also gives rise to severe, long-lasting immuno-
logic incompetence in rodents (1,11,12).
Collectively, these reports demonstrate that
prenatal exposure to certain immunotoxic
compounds may alter fetal development of
immunity in mice, causing severe and sus-
tained postnatal immunosuppression in the
absence of overt toxicity. Additional agents
that produce developmental immunotoxicity
in rodents are diverse and include PAHs
other than B[a]P such as 7,12-dimethyl-
benz[a]anthracene, 3-methylcholanthrene;
pesticides other than chlordane such as hexa-
chlorocyclohexane and DDT; polycyclic halo-
genated hydrocarbons such as TCDD; heavy
metals such as cadmium and mercury; hor-
monal substances such as DES, testosterone,
and cortisone; mycotoxins (most notably T2
toxin); and therapeutic agents such as acy-
clovir and cyclophosphamide [Table 1;
reviewed by Holladay and Luster (13)].
Several of these agents target the fetal thymus,
producing fetal thymic atrophy as well as
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Table 1. Developmental immunotoxicants.a

Halogenated aromatic hydrocarbons
2,3,7,8-Tetrachlorodibenzo-p-dioxin
Polyhalogenated biphenyls (PCBs, PBBs)

Polycyclic aromatic hydrocarbons
Benzo[alpyrene
Methylcholanthrene
7,12-Dimethylbenz(a)anthracene

Pesticides
Hexachlorocyclohexane
Chlordane
Diazinon
DDT
Carbofuran

Fungicides
Hexachlorobenzene

Heavy metals
Methyl mercury
Lead
Cadmium

Hormonal substances
Estrogens/diethylstilbestrol
Testosterone
Cortisone

Therapeutic agents
Acyclovir
Busulfan
Cyclophosphamide

Mycotoxins
T2 toxin

Abbreviations: PCBs, polychlorinated biphenyls; PBBs, poly-
brominated biphenyls. 'Modified from Holladay and Luster (13).

altered differentiation of fetal T-lymphocyte
precursor cells (thymocytes) (summarized in
Table 2). Such chemical insult on thymocyte
maturation during critical periods of self-
learning may have detrimental consequences
on immune function in postnatal life, includ-
ing possible expression of autoimmunity (14).
The environmental contaminant TCDD has
probably received the most focused research
attention in this regard.

TCDD: The Prototypic
Halogenated Aromatic
Hydrocarbon
The chemical agent most studied for
suppressive effects on the immune system is
undoubtedly TCDD. This compound has
also recently become suspect for producing
changes in immune cells and immune support
cells, which may potentiate development of
autoimmune diseases. Greenlee et al. (15) and
Schuurman et al. (16) described targeting of
thymic epithelium by TCDD, leading to sug-
gestions that TCDD may have the potential
to alter critical epithelium-dependent selective
events in the thymus through which develop-
ing thymocytes expressing autoreactive T-cell
receptors (TCRs) are deleted. DeWaal et al.
(17) further observed altered thymic epithelial
distribution of major histocompatability com-
plex (MHC) class II molecules in TCDD-
treated mice, an effect that was hypothesized
as having potential to cause defective
thymocyte-epithelial cell interactions.

Table 2. Immunotoxicants producing fetal thymic atrophy and impaired thymocyte differentiation in mice.a

Immunotoxicant Exposure regimen

2,3,7,8-Tetrachlorodibenzo-p-dioxin 1.5-3.0 mg/kg/day from gd 6-14
3,3',4,4'-Tetrachlorobiphenyl 6-16 mg/kg on gd 12
Diethylstilbestrol 3-8 mg/kg/day from gd 10-16
Ethylene glycol monomethyl ether 100-200 mg/kg/day from gd 10-17
Benzo[alpyrene 50-150 mg/kg/day from gd 14-17
7,12-Dimethylbenz[alanthracene 10-25 mg/kg/day from gd 14-17
T2 mycotoxin 1.2-1.5 mg/kg/day from gd 14-17

gd, gestational day(s). Modified from Holladay and Luster 160).

Specifically, MHC class I and dass II molecules
act as thymic self-antigen-presenting molecules
in a process whereby thymocytes expressing
TCRs with high affinity to self-antigen are
eliminated (negative selection). It has also
been noted that similar patterns of inhibited
thymic T-cell differentiation occur sponta-
neously in autoimmune mice (18), in
TCDD-treated mice (14), and in mice
treated in vivo with monoclonal antibodies to
MHC class I and class II molecules (19), sug-
gesting the importance of these MHC mole-
cules in thymocyte differentiation. TCDD
was recently found to downregulate expres-
sion of an MHC dass I gene (Q1b) in a mouse
hepatoma cell line (20). Specifically, these
authors observed that MHC Qlb cDNA
encoded for the a3 domain and transmem-
brane domain of the Qlb class I protein,
implying that the MHC gene product could
interact with P2-microglobulin. These obser-
vations led to the hypothesis that the MHC
Qlb molecule downregulated by TCDD may
function in antigen presentation (20).

Together, these effects of TCDD on
thymocytes, thymic epithelium, and MHC
molecules associated with antigen presentation
raise questions regarding the ability ofTCDD
to alter normal development of self-tolerance
in T cells in a way that may increase expressed
autoimmunity. The popliteal lymph node
assay has been proposed by some as a tool to
predict autoimmune reactions induced by
chemicals (21) and recently was found to
elicit a positive response in male rats injected
with TCDD (22). Based on this observation
(22) these authors joined others suggesting
that TCDD may have the potential to induce
or exacerbate autoimmunelike reactions.

Because chemical-induced altered
intrathymic negative selection of potential
autoreactive T cells may result in increased
release of such cells to the periphery, other
investigators have looked for emergence ofT
cells carrying TCR-variable regions associated
with self-reactivity in TCDD-treated animals.
The TCR-variable , (Vp) chains are usually
deleted in the thymus by reaction with self-
MHC and minor lymphocyte stimulatory
antigens (23,24) and have been associated
with autoimmunity in some experimental
mouse models (25). Therefore, deHeer et al.
(26) examined the thymus, spleen, and

mesenteric lymph nodes of adult mice dosed
with TCDD for autoreactive mature V,B6+
T cells and were not able to demonstrate emer-
gence of such cells. However, in related studies
Silverstone et al. (27) found that both TCDD
and estradiol induce extrathymic T-cell differ-
entiation in the liver ofyoung adult mice, and
that such extrathymic cells expressed elevated
levels ofVp+ TCR Such an increase in T cells
associated with autoreactivity has been sug-
gested as a mechanism by which estrogen may
promote autoimmunity (23). Silverstone et al.
(27) have similarly suggested that these find-
ings with TCDD (increased extrathymic
autoreactive T cells) may relate to ability of
this HAH to promote autoimmunity.

Effects of TCDD on T-Cell
Development: Comparison
to Cyclosporin A
The demonstration of high sensitivity of the
developing immune system to TCDD, cou-
pled with evidence that TCDD exposure in
adult animals may result in increased expres-
sion of autoimmune disease, has raised ques-
tions regarding possible relationships
between prenatal exposure to TCDD and
increased postnatal autoimmunity. Low-level
maternal TCDD exposure produces fetal
thymic atrophy as well as inhibition of thy-
mocyte differentiation (Table 3). Fetal liver
T-progenitor cells seed the fetal thymus and
are initially double negative with respect
to CD4 and CD8 surface antigens.
Subsequently, thymocytes develop sequen-
tially through immature CD810 and CD4+8+
double-positive stages in the thymic cortex to
mature CD4+ SP or CD8+ SP thymocytes in
the thymic medulla by gestational days
18-19 (28,29). TCDD produces a signifi-
cant maturational delay in fetal thymocyte
development, as evidenced by these CD4
and CD8 surface antigens. This delay has
been described as similar to the maturational
inhibition produced in fetal thymic organ
culture by the therapeutic immunosuppres-
sive drug CsA (14). Fetal thymic organ cul-
ture was used rather than in vivo exposure to
study the effect of CsA on developing T cells
because CsA crosses the placenta poorly
(30). Fetal mouse exposure to TCDD or ex
vivo exposure of fetal mouse thymi to CsA
decreased the percentage of double-positive
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Table 3. Effect of TCDD on fetal thymic weight and thymocyte CD4 and CD8 antigen expression.abc

CD marker expression (% positive) Thymic weight/
Treatment CD4+8- CD4+8+ CD4-8- CD4-8+ body weight (%)

Vehicle 1.8 ± 0.2 69.1 ± 1.2 21.1 ± 0.7 8.1 ± 0.7 0.24
1.5 pg/kg 1.5 ± 0.1 52.6 ± 2.5* 30.3 ± 1.8* 15.5 ± 0.9* 0.14*
3.0 pg/kg 2.0 ± 0.2 43.2 ± 4.5* 37.3 ± 3.7* 17.5 ± 0.9* 0.10*

TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin. aCD4 and CD8 surface antigen expression was determined in fetal mice on gestational day
(gd) 18 after matemal exposure to 1.5 or 3.0 pg/kg/day TCDD from gd 6-14. bValues represent mean ± SEM of 5 mice per treatment
group. 0Modified from Holladay et al. (6). *p< 0.05 versus vehicle controls.

cells (the most mature phenotype present in
significant numbers in the end-gestation
mouse fetus) and increased the percentage of
both double-negative cells and immature
(i.e., TCR-) CD8IO thymocytes. Any intrinsic
(hormonal) or extrinsic (chemical) insult on
thymocyte maturation during critical periods
of thymocyte selection for self-recognition
may have significant and detrimental conse-
quences on immune function in postnatal life
(14). Thus, this pattern of inhibition by
TCDD or CsA raised questions about interfer-
ence with neonatal development of tolerance
by these chemicals.

In rodents, CsA also reduces MHC class
II antigen expression in the thymus (31), an
effect that was associated with development
of autoimmune disease in Lewis rats exposed
to CsA following lethal irradiation and syn-
geneic bone marrow reconstitution (32).
Specifically, these studies demonstrated a
T-cell-mediated autoimmune disease in the
rats treated with CsA after bone marrow
transplant, manifested as a syngeneic graft-
versus-host response (SGVHR). Briefly, the
development of a chronic graft-versus-
host-like disease, typical of that seen in
rodents or humans following allogeneic mar-
row transplantation, was observed in the
CsA-exposed rodents that had received syn-
geneic bone marrow transplants (33). This
observation of an SGVHR was the demon-
stration of an immune system rejecting
genetic self (i.e., autoimmunity), indicating
that CsA produced a fundamental disruption
in development of self-tolerance. These
authors demonstrated that the CsA-induced
autoreactivity was transferred with the CD8+
subpopulation ofT cells, suggesting that CsA
interfered with deletion of these cells during
the establishment of a new immune system in
the irradiated animals (33).

Model Development
The use of a bone marrow transplant model
in syngeneic animals to demonstrate CsA-
induced interference with normal establish-
ment of self-tolerance may have interesting
implications for future studies that consider
relationships between perinatal exposure to
environmental chemicals and subsequent
development of autoimmune disease.
Specifically, the SGVHR model mimics fetal

immune development in many ways; in both
cases a new immune system must be estab-
lished from a limited population of
hematopoietic progenitor cells. In either situ-
ation (developing fetus or adult transplant),
this process requires that large numbers of
immune cells be ushered through the normal
selective processes governing establishment of
self-recognition. It is reasonable to expect that
a chemical effect on these selective processes
may be more profound (thus easier to iden-
tify) in these developmental models than in
an adult model in which the immune system
is already established and substantially fewer
immune cells are undergoing selection.
Further, a syngeneic bone marrow transplant
model is not limited by placental transfer of
chemical. Thus the model may again facilitate
identification of agents causing limited but
real effects on developing immune cells. For
example, placental transfer of CsA appears to
be negligible (34), and ex vivo models such as
fetal thymic organ culture have been used to
study possible effects of this drug on immune
development (30). Considerably less than 1%
of the maternal dose of TCDD crosses the
placenta in the mouse (35), yet this fetal
exposure causes significant and diverse effects
on the developing immune system (14,36).

The demonstration that CsA produces
autoimmune disease in rodents by altering thy-
mocyte differentiation during negative selec-
tion of autoreactive T cells, an effect that
appears to be related to downregulation of
thymic MHC class II molecules, brings up
interesting questions regarding TCDD.
TCDD produces an inhibition of fetal thymo-
cyte differentiation very similar to that seen in
fetal thymic organ cultures exposed to CsA
and also interferes with expression of thymic
MHC dass II molecules (17). Thus, TCDD
produces effects similar to those that have been
related to production of autoimmune disease
in CsA-treated animals. Whether these effects
may be related to increased autoimmune dis-
ease in TCDD-exposed rodents or humans is
presently not known. However, Silverstone et
al. recently found that monthly exposure of
young adult SNFI mice to TCDD resulted in
the appearance of autoimmune nephritis in
males in the first 6 months of life (37). These
authors further reported that a single fetal
exposure to TCDD in NZB x SWR

(SNFI) mice significantly reduced the
time to postnatal onset ofautoimmune nephri-
tis in male offspring. Together, these data sug-
gest that TCDD may have the potential to
induce autoimmune disease in genetically pre-
disposed animals. It may therefore be of inter-
est to evaluate the effect of TCDD on
development of autoimmune responses in syn-
geneic rodents after irradiation and bone mar-
row transplantation, where placental transfer
does not limit exposure of the developing
immune system to TCDD.

Diethyistilbestrol: A Model
Estrogen
The regulatory actions of estrogenic steroids
on immune function in adult animals are well
documented but remain poorly understood.
A role for endogenous estrogen and the devel-
opment of autoimmune disease exists, as well
as a correlation between increased serum
estradiol levels (e.g., during pregnancy) and
infections resulting from depression of cell-
mediated immunity (38,39). Administration
of pharmacologic or suprapharmacologic lev-
els of steroidal and nonsteroidal estrogenic
compounds further results in numerous alter-
ations of immune function, particularly when
administered perinatally during lymphoid
organ organogenesis. Effects of such adminis-
tration in rodents include myelotoxicity
(40,41), suppression of cell-mediated immu-
nity (42,43), pronounced thymic atrophy
(44,45), depressed activity of natural killer
cells (46,47), and stimulation of the reticulo-
endothelial system (48,49). Studies of
women exposed in utero to DES, a synthetic
nonsteroidal compound possessing estrogenic
activity, suggest possible adverse affects on the
postnatal human immune system. For
instance, altered function of T lymphocytes
and natural killer cells in women exposed to
DES in utero has been reported (50,51) as
well as an increased incidence of autoimmune
diseases (52). Although it appears that estro-
gens mediate certain of their immune effects
at the thymic level by altering thymic epithe-
lium-dependent mechanisms (53), little is
understood about mechanisms by which
estrogenic chemicals may influence immune
responses to foreign or self-antigens.

An altered prenatal hormonal environment
has been associated with increased risk of
developing autoimmune disease in mice (54).
It has also been suggested that humans exposed
in utero to DES may display a hyperreactive
immune response (55). A retrospective study
of DES-exposed (1,711 individuals) and unex-
posed (922 individuals) cohorts examined the
possibility that prenatal DES may affect the
prevalence ofautoimmune disease and found a
positive correlation when autoimmune diseases
were grouped (4). Specifically, the overall
frequency of any autoimmune disease among
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exposed women was 28.6 per 1,000 compared
to 16.3 per 1,000 among the controls (signifi-
candy different at p = 0.02). Autoimmune dis-
eases evaluated included systemic lupus
erythematosus, scleroderma, Graves disease,
Hashimoto thyroiditis, pernicious anemia,
myasthenia gravis, thrombocytopenic purpura,
rheumatoid arthritis, regional enteritis, chronic
ulcerative colitis, multiple sclerosis, chronic
lymphocytic thyroiditis, Reiter syndrome, and
optic neuritis. When these autoimmune dis-
eases were considered individually, however,
only Hashimoto thyroiditis occurred signifi-
candy more often in the exposed women (p =
0.04). A similar evaluation of 1,173 humans
exposed to DES during development (1,079
daughters and 94 sons) found increased
asthma, arthritis, and diabetes mellitus com-
pared to prevalence rates for these diseases in
the general population (56). However, in a
more recent study evaluating rates of allergy,
infection, and autoimmune disease in DES-
exposed sons and daughters (253 men and 296
women) matched with similar unexposed indi-
viduals (241 men and 246 women), no differ-
ences in disease occurrence were detected (57).
These authors conduded that a larger sample
was needed to evaluate DES-associated risk of
autoimmunity, since autoimmune diseases are
relatively rare in the human population.

Thus preliminary studies of humans
exposed before birth to DES suggest the pos-
sibility of postnatal immune alterations,
including increased autoimmune disease.
Continued surveillance of DES sons and
daughters will be required for more definitive
statements but will become more difficult as
this cohort ages and members are lost.
Laboratory rodent studies will therefore be
important to determine if prenatal exposure
to chemicals such as DES may alter develop-
ment ofimmune cells in such a way as to pre-
dispose an individual to expression of
postnatal autoimmunity and to answer ques-
tions regarding specific immune cell targets
and mechanisms of action.

Hybrid B6C3F1 (C57B1/6N x C3H)
mice exposed to 8 pg/kg/day DES from days
10-16 of gestation displayed significant
thymic hypocellularity in late gestation as
well as limited but significant inhibition of
thymocyte maturation (Table 4) (58).
Thymic involution in these studies was
related to a reduction by DES of fetal liver
prothymocytes responsible for colonizing the
fetal thymus. These authors also reported that
fetal liver prothymocytes expressed estrogen
receptors at about 290 fmol/100 pg DNA, a
level approximately half that found in the
uterus and sufficient to suggest an estrogen-
responsive cell. These and other reports indi-
cate the developing mouse immune system is
sensitive to estrogen exposure, and that such
exposure may contribute to postnatal

Table 4. Effect of DES on fetal thymocyte cellularity and CD4 and CD8 antigen expression.abc

CD marker expression (% positive) Cellularity
Treatment CD48- CD4+8+ CD48 CD4-8+ (x 106)

Vehicle 4.1 ± 0.2 71.4 ± 0.7 22.0 ± 0.7 2.7 ± 0.2 40.4 ± 2.6
3 mg/kg 3.2 ± 0.4 64.0 ± 2.5* 28.8 ± 2.5* 4.0 ± 0.3* 18.9 ± 1.9*
8 mg/kg 4.0 ± 0.4 63.6 ± 1.6* 29.2 ± 1.5* 3.3 ± 0.3 8.7 ± 1.9*
DES, diethylstilbestrol. 'CD4 and CD8 surface antigen expression was determined in fetal mice on gestational day lgdl 18 after mater-
nal exposure to 3 or 8 pg/kg/day DES from gd 10-16. bValues represent mean ± SEM of 5 mice per treatment group. cModified from
Holladay et al. (58). *p< 0.05 versus vehicle controls.

immunosuppression (13). However, as with
most of the well-established rodent develop-
mental immunotoxicants, very limited infor-
mation is available addressing possible
relationships between gestational DES expo-
sure and altered expression of postnatal
autoimmune disease.

A single fetal exposure to DES in SNF1
mice induced autoimmune lupuslike nephri-
tis in male offspring between 5 and 10
months of age (37). Female SNF1 mice
develop this autoimmune syndrome sponta-
neously in their first year of life; however,
male mice do not display significant autoim-
munity before 1 year of age. These data sug-
gest that pharmacologic exposure to DES
may contribute to early expression of autoim-
munity in genetically predisposed mice, and
that autoimmune rodent models such as the
SNF1 model may prove valuable for identifi-
cation of biologic markers for human risk
assessment. Because autoimmune diseases are
multifactorial (genetic, environmental, hor-
monal, infectious) (59), clearly, continued
research will be required to determine possi-
ble relationships between prenatal estrogen
exposure and postnatal development of
autoimmune disease.

Conclusion
It has been repeatedly demonstrated that
the developing immune system is highly
sensitive to known adult immunotoxicants
that cross the placenta. However, the devel-
opmental immunotoxicity data presently
available in the literature are almost exclu-
sively limited to postnatal immunosuppres-
sion (rather than hypersensitivity or
autoimmunity). Indeed, very few immuno-
toxicants (e.g., DES, TCDD) that have
been associated with induced or exacerbated
autoimmunity in adult animals have been
evaluated for similar effects following gesta-
tional exposure. Preliminary data suggest
that both DES and TCDD may alter devel-
opment of the immune system in mice
genetically predisposed to autoimmune dis-
ease, causing earlier expression of autoim-
munity. DES is a nonsteroidal estrogen, and
as such is often used to study the effects on
immune function of both endogenous
estrogens and environmental compounds
possessing estrogenic activity. TCDD is the
most biologically potent member of a

family of polyhalogenated aromatic hydro-
carbons that contains other important
environmental contaminants such as poly-
chlorinated biphenyls and halogenated
dibenzofurans. Given the large number of
estrogenic environmental contaminants
(including many agents presently grouped
under the umbrella of endocrine-disrupting
compounds) and the extent of environmen-
tal contamination with TCDD and TCDD
congeners, the importance of determining if
these agents (acting alone or in mixtures)
may alter normal development of the
immune system in a way that may con-
tribute to increased autoimmune disease in
humans is becoming evident.

REFERENCES AND NoTEs

1. Fine JS, Gasiewicz TA, Silverstone AE. Lymphocyte stem cell
alterations following perinatal exposure to 2,3,7,8-tetra-
chlorodibenzo-p-dioxin. Mol Pharmacol 35:18-25(1989).

2. Schlumpf M, Ramseier H, Lichtensteiger W. Prenatal diazepam
induced persisting depression of cellular immune responses.
Life Sci 44:493-501 (1989).

3. Ford CD, Johnson GH, Smith WG. Natural killer cells in in
utero diethylstilbestrol-exposed patients. Gynecol Oncol
16:400-407 (1983).

4. Noller KL, Blair PB, O'Brien PC, Melton W, Offord JR, Kaufman
RH, Colton T. Increased occurrence of autoimmune disease
among women exposed in utero to diethylstilbestrol. Fertil
Steril 49:1080-1087 (1988).

5. Ways SC, Mortola JF, Zvaifler NJ, Weiss RJ, Yen SSC.
Alterations in immune responsiveness in women exposed to
diethylstilbestrol in utero. Fertil Steril 48:193-201 (1987).

6. Holladay SD, Lindstrom P, Blaylock BL, Comment CE, Germolec
DR, Heindel JJ, Luster Ml. Perinatal thymocyte antigen expres-
sion and postnatal immune development altered by gestational
exposure to tetrachlorodibenzo-p-dioxin (TCDD). Teratology
44:385-393 (1991).

7. Ball J, Dawson D. Biological effects of neonatal injection of
7,12-dimethylbenz(a)anthracene. J NatI Cancer Inst
42:579-591 (1969).

8. Faith RE, Moore JA. Impairment of thymus-dependent immune
functions by exposure of the developing immune system to
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). J Toxicol Environ
Health 3:451-464(1977).

9. Urso P, Gengozian N. Subnormal expression of cell-mediated
and humoral immune responses in progeny disposed toward
a high incidence of tumors after in utero exposure to
benzo(a)pyrene. J Toxicol Environ Health 14:569-584 (1984).

10. Corrier DE, Ziprin RL. Immunotoxic effects of T-2 toxin on cell-
mediated resistance to Listeria monocytogenes. Vet Immunol
Immunopathol 14:11-21)1987).

11. Poland A, Knutson JC. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and
related halogenated aromatic hydrocarbons: examination of
the mechanism of toxicity. Annu Rev Pharmacol Toxicol
22:517-554(1982).

12. Dencker L, Hassoun E, d'Argy R, Aim G. Fetal thymus organ cul-
ture as an in vitro model for the toxicity of 2,3,7,8-tetra-
chlorodibenzo-p-dioxin and its congeners. Mol Pharmacol
27:133-140)1985).

13. Holladay SD, Luster Ml. Developmental immunotoxicology. In:
Developmental Toxicology, 2nd ed (Kimmel C, Buelke-Sam J,
eds.) New York:Raven Press, 1994;93-118.

690 Environmental Health Perspectives * Vol 107, Supplement 5 * October 1999



PRENATAL CHEMICAL EXPOSURE AND AUTOIMMUNE DISEASE

14. Blaylock BL, Holladay SD, Comment CE, Heindel JJ, Luster Ml.
Modulation of perinatal thymocyte surface antigen expression
and inhibition of thymocyte maturation by exposure to 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD). Toxicol Appl Pharmacol
112:207-213(1992).

15. Greenlee WF, Dold KM, Irons RD, Osborne R. Evidence for
direct action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on
thymic epithelium. Toxicol AppI Pharmacol 79:112-120(1985).

16. Schuurman H-J, Van Loveren H, Rozing J, Vos JG. Chemicals
trophic for the thymus: risk for immunodeficiency and autoim-
munity. Int J Immunopharmacol 14:369-375 (1992).

17. DeWaal EJ, Schuurman H-J, Loeber JG, Van Loveren H, Vos
JG. Alterations in the cortical thymic epithelium of rats after
in vivo exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD):
An (immuno)histological study. Toxicol Appi Pharmacol
115:80-88 (1992).

18. Kakkanaiah VN, Pyle RH, Nagarkatti M, Nagarkatti PS.
Evidence for major alterations in the thymocyte subpopulations
in murine models of autoimmune diseases. J Autoimmunity
3:271-288 (1990).

19. Kruisbeek AM, Bridges S, Carmen J, Longo DL, Mond JJ. In vivo
treatment of neonatal mice with anti-I-A antibodies interferes
with the development of the class 1, class 11, and Mis-reactive
proliferating T cell subset. J Immunol 134:3597-3604 (1985).

20. Dong L, Ma Q, Whitlock JP. Down regulation of major histo-
compatibility complex 0lb gene expression by 2,3,7,8-tetra-
chlorodibenzo-p-dioxin. J Biol Chem 272:29614-29619 (1997).

21. Descotes J. The popliteal lymph node assay: a tool for studying
the mechanisms of drug-induced autoimmune disorders. Toxicol
Lett 64/65:101-107 (1992).

22. Fan F, Pinson DM, Rozman KK. Immunoregulatory effect of
2,3,7,8-tetrachlorodibenzo-p-dioxin tested by the popliteal
lymph node assay. Toxicol Pathol 23:513-517 (1995).

23. Okuyama R, Abo T, Seki S, Ohteki T, Sugiura K, Kusumi A,
Kumagai K. Estrogen administration activates extrathymic T cell
differentiation in the liver. J Exp Med 175:661-669 (1992).

24. Hanawa H, Tsuchida N, Matsumoto Y, Watanabe H, Abo T,
Sekikawa H, Kodama M, Zhang S, Izumi T, Shibata A.
Characterization of T cells infiltrating the heart in rats with
experimental autoimmune myocarditis: their similarity to
extrathymic T cells in mice and the site of proliferation.
J Immunol 150:5682-5695 (1993).

25. Rocha B, Bassalli P, Guy-Grand D. The extrathymic T-cell devel-
opment pathway. Immunol Today 13:449-454(1992).

26. DeHeer C, van Driesten G, Schuurman H-J, Rozing J, van
Loveren H. No evidence for emergence of autoreactive V,B6+
T cells in Mis-ia mice following exposure to a thymotoxic
dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology
103:195-203 (1995).

27. Silverstone AE, Frazier DE Jr, Gasiewicz TA. Alternate immune
system targets for TCDD: lymphocyte stem cells and
extrathymic T-cell development. Exp Clin Immunogenet
11:94-101 (1994).

28. Hussman LA, Shimonkevitz RP, Crispe IN, Bevan MJ. Thymocyte
subpopulations during early fetal development in the BALB/c
mouse. J Immunol 141:736-740 (1988).

29. Penit C, Vaddeur F. Cell proliferation and differentiation in
fetal and early postnatal mouse thymus. J Immunol
142:3369-3377 (1989).

30. Kosugi A, Zuniga-Pflunker JC, Sharrow SD, Kruisbeek AM,
Shearer GM. Effect of cyclosporin A on lymphopoiesis. II:
Developmental effects on immature thymocytes in fetal thymus
organ culture treated with cyclosporin A. J Immunol
143:3134-3140 (1989).

31. Billingham RE. The biology of graft-versus-host reactions.
Harvey Lect 62:21-28 (1966).

32. Hess AD, Horwitz L, Beschorner WE, Santos GW. Development
of a graft-versus-host disease-like syndrome in cyclosporine-
treated rats after syngeneic bone marrow transplantation.
I: Development of cytotoxic T lymphocytes with apparent poly-
clonal anti-la specificity, including autoreactivity. J Exp Med
161:718-724 (1985).

33. Hess AD, Fischer AC, Beschorner WE. Effector mechanisms in
cyclosporine A-induced syngeneic graft-versus-host disease.
Role of CD4+ and CD8+ T lymphocyte subsets. J Immunol
145:526-533 (1990).

34. Nandakumaran M, Eldeen AS. Transfer of cyclosporin in the per-
fused human placenta. Dev Pharmcol Ther 15:101-105 (1990).

35. Heinz N, Bass R. Transfer of 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD) to the mouse embryo and fetus. Toxicol
20:299-308 (1981).

36. Faith RE, Moore JA. Impairment of thymus-dependent immune
functions by exposure of the developing immune system to
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). J Toxicol Environ
Health 3:451-464 (1977).

37. Silverstone AE, Gavalchin J, Gasiewicz TA. TCDD, DES, and
estradiol potentiate a lupus-like autoimmune nephritis in NZB x
SWR (SNF,) mice [Abstract). Toxicologist 42:403 (1998).

38. Mathur S, Mathur RS, Goust JM, Williamson HD, Fudenburg
HH. Cyclic variations in white cell subpopulations in the human
menstrual cycle: correlations with progesterone and estradiol.
Clin Immunol Immunopathol 13:246-254(1979).

39. Hamilton MS, Hellstrom I. Altered immune responses in preg-
nant mice. Transplantation 23:423-431 (1977).

40. Fried W, Tichler T, Dennenberg I, Barone J, Wang F. Effects of
estrogens on hematopoiesis of mice. J Lab Clin Med 83:
807-815 (1974).

41. Boorman GA, Luster Ml, Dean JH, Wilson RE. The effect of
adult exposure to diethylstilbestrol in the mouse on macro-
phage function. J Reticuloendothel Soc 28:547-555 (1980).

42. Kalland T, Fossberg T, Fossberg J. Effect of estrogen and corti-
costerone on the lymphoid system in neonatal mice. Exp Mol
Pathol 28:76-95(1978).

43. Ways SC, Bern HA. Long-term effects of neonatal treatment
with cortisol and/or estrogen in the female BALB/c mouse. Proc
Soc Exp Biol Med 160:94-98 (1979).

44. Aboussaouira T, Marie C, Brugal G, Idelman S. Inhibitory effect
of 17p-estradiol on thymocyte proliferation and metabolic activ-
ity in young rats. Thymus 17:167-173 (1991).

45. Greenman DL., Dooley K, Breeden CR. Strain differences in the
response of the mouse to diethylstilbestrol. J Toxicol Environ
Health 3: 589-597 (1977).

46. Seaman WE, Merigan TC, Talal N. Natural killing in estrogen-
treated mice responds poorly to poly IC despite normal stimu-
lation of circulating interferon. J Immunol 123:2903-2910
(1979).

47. Kalland T. Reduced natural killer activity in female mice after
neonatal exposure to diethylstilbestrol. J Immunol
124:1297-1306 (1980).

48. Nicol T, Bilbey DLW, Charles LM, Cordingley JL, Vernon-Roberts
B. Oestrogen: the natural stimulant of body defense.
J Endocrinol 30:277-285 (1964).

49. Ford CD, Johnson GH, Smith WG. Natural killer cells in in
utero diethylstilbestrol-exposed patients. Gynecol Oncol 16:
400-409(1983).

50. Kalland T, Fossberg J. Natural killer cell activity and tumor sus-
ceptibility in female mice treated neonatally with diethystilbe-
strol. Cancer Res 41:5134-5141 (1981).

51. Ways SC, Mortola JF, Zvaifler NJ, Weiss RJ, Yen SSC.
Alterations in immune responsiveness in women exposed to
diethylstilbestrol in utero. Fertil Steril 48:193-201 (1987).

52. Noller KL, Blair PB, O'Brien PC, Melton U, Offord JR, Kaufman
RH, Colton T. Increased occurence of autoimmune disease
among women exposed in utero to diethylstilbestrol. Fertil
Steril 49:1080-1088 (1988).

53. Grossman CJ, Roselli GA. The interrelationship of the HPG-
thymic axis and immune system regulation. J Steroid Biochem
119:461-470 (1983).

54. Walker SE, Keisler LW, Caldwell CW, Kier AB, vom Saal FA.
Effects of altered prenatal hormonal environment on expression
of autoimmune disease in NZB/NZW mice. Environ Health
Perspect 104(suppl 4):815-821 (1996).

55. Anderson RE, Tokuda S, Williams WL, Warner NL. Radiation-
induced augmentation of the response of A/J mice to Sal tumor
cells. Am J Pathol 108:24-33 (1982).

56. Wingard DL, Turiel J. Long-term effects of exposure to diethyl-
stilbestrol. West J Med 149:551-554 (1988).

57. Baird DD, Wilcox AJ, Herbst AL. Self-reported allergy, infection,
and autoimmune diseases among men and women exposed
in uteroto diethylstilbestrol. J Clin Epidemiol 49:263-266 (1996).

58. Holladay SD, Blaylock BL, Comment CE, Heindel JJ, Fox WM,
Korach KS, Luster Ml. Selective prothymocyte targeting by prena-
tal diethylstilbestrol exposure. Cell Immunol 152:131-142 (1993).

59. Talal N. Lessons from autoimmunity. Ann NY Acad Sci
690:19-23 (1993).

60. Holladay SD, Luster Ml. Alterations in fetal thymic and liver
hematopoietic cells as indicators of exposure to developmental
immunotoxicants. Environ Health Perspect 104 (suppl
4):809-813 (1996).

Environmental Health Perspectives * Vol 107, Supplement 5 * October 1999 691


